Lung ultrasound for childhood pneumonia

Created for Innovations in Global Health Seminars (Kuska Center)

October 23, 2014

Miguel A. Chavez, M.D.
Research Associate for A.B PRISMA
Fogarty Global Health Fellow
Disclaimer

- Some statements in this presentation are opinions of the author and not those of Fogarty International Center or AB PRISMA.

Conflict of interest:
- Support and collaboration with grants from the Global Health Fellowship, Bill and Melinda Gates foundation
Outline

• Background
• Introduction of lung ultrasound
• Results of our group
• Future directions
• Conclusions
Pneumonia = global health problem

(2) WHO. Global Health Observatory (http://www.who.int/gho/child_health/en/index.html)
EVERY YEAR:

- 150 million cases in <5y
- 20 million requires hospitalization
- 1.1 million children dies
 - More than AIDS, malaria and tuberculosis combined
 - 90-95% in developing countries

Diagnosis

(1) Signs or symptoms of respiratory distress
 Cough, fever, tachypnea, difficulty breathing

(2) Radiologic evidence of an acute pulmonary infiltrate

Limitations
 • Ill-defined classifications
 • Inter-observer variability
 • Requires time, resources, and specialized physicians

Source: (1) Evidence-based care guidelines for medical management of community acquired pneumonia in children 60 days to 17 years of age. www.cincinnatichildrens.org/svc/alpha/h/health-policy/ev-based/pneumonia.htm
Low resource settings

Cough/shortness of breath +
>50 breaths/min in 2-12 m
>40 breaths/min in 1 to 5y

PNEUMONIA

• Limitations
 – Moderate sensitivity and poor specificity
 – Worsens antibiotic resistance
 – Fails to address other respiratory conditions and their life-saving treatments

LUNG ULTRASOUND
Is this a new idea?

- First description
 - Bogin et al. 1970

- Concept and case series in the 1980s
Lung ultrasound

- No gold standard for diagnosis
- LUS advantages to CXR
 - Wider availability
 - Bedside/ Portability
 - Repeatability
 - Safe (No ionizing radiation)
 - Ease of use/learning curve
Procedure

Ellington et al, BMJ Open, 2012
Lung ultrasound: What is normal?

- **A lines**: The *absence* of findings
 - Air does not transmit ultrasound waves
Abnormal causes artifacts

- Lung disease is a disruption of the air/tissue ratio: fluid, pus, blood, fibrosis
Pattern recognition

NORMAL LUNG

CONSOLIDATION

INTERSTITITAL
1. Meta-analysis

Studies with neonates/children with clinical suspicion of pneumonia and/or confirmation with CXR or chest CT scan.

1475 studies identified

- Eight selected for analysis
- Six (75%) in pediatric population
- Two (25%) in neonates

Pereda MA, Chavez MA et al, submitted results
Sensitivity and Specificity

Reali et al. [20]
Liu et al. [21]
Esposito et al. [14]
Shah et al. [15]
Caiulo et al. [22]
El Dien et al. [23]
Iuri et al. [24]
Copetti et al. [13]
Overall

Sensitivity (%)

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reali et al. [20]</td>
<td>93.8%</td>
<td>[86.2%, 98%]</td>
</tr>
<tr>
<td>Liu et al. [21]</td>
<td>100%</td>
<td>[91%, 100%]</td>
</tr>
<tr>
<td>Esposito et al. [14]</td>
<td>97.9%</td>
<td>[88.9%, 99.9%]</td>
</tr>
<tr>
<td>Shah et al. [15]</td>
<td>85.7%</td>
<td>[69.7%, 95.2%]</td>
</tr>
<tr>
<td>Caiulo et al. [22]</td>
<td>98.9%</td>
<td>[93.9%, 100%]</td>
</tr>
<tr>
<td>El Dien et al. [23]</td>
<td>93.2%</td>
<td>[84.7%, 97.7%]</td>
</tr>
<tr>
<td>Iuri et al. [24]</td>
<td>91.7%</td>
<td>[73%, 99%]</td>
</tr>
<tr>
<td>Copetti et al. [13]</td>
<td>100%</td>
<td>[94%, 100%]</td>
</tr>
<tr>
<td>Overall</td>
<td>95.8%</td>
<td>[93.5%, 97.4%]</td>
</tr>
</tbody>
</table>

Specificity (%)

<table>
<thead>
<tr>
<th>Study</th>
<th>Specificity (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reali et al. [20]</td>
<td>96.2%</td>
<td>[80.4%, 99.9%]</td>
</tr>
<tr>
<td>Liu et al. [21]</td>
<td>100%</td>
<td>[91.2%, 100%]</td>
</tr>
<tr>
<td>Esposito et al. [14]</td>
<td>94.5%</td>
<td>[84.9%, 98.9%]</td>
</tr>
<tr>
<td>Shah et al. [15]</td>
<td>88.5%</td>
<td>[82.4%, 93%]</td>
</tr>
<tr>
<td>Caiulo et al. [22]</td>
<td>100%</td>
<td>[75.3%, 100%]</td>
</tr>
<tr>
<td>El Dien et al. [23]</td>
<td>100%</td>
<td>[15.8%, 100%]</td>
</tr>
<tr>
<td>Iuri et al. [24]</td>
<td>100%</td>
<td>[39.8%, 100%]</td>
</tr>
<tr>
<td>Copetti et al. [13]</td>
<td>100%</td>
<td>[82.4%, 100%]</td>
</tr>
<tr>
<td>Overall</td>
<td>93%</td>
<td>[89.6%, 95.6%]</td>
</tr>
</tbody>
</table>

I² = 65.5%

I² = 47.8%

Pereda MA, Chavez MA et al, submitted results
2. Peru Pneumonia Project

Diagnostic validation study in Children 2-59 months old in a tertiary care hospital in Lima, Peru

1062 children were screened

– 230 healthy controls
– 832 (87%) with respiratory symptoms that had CXR available
– 453 (43%) had pneumonia by pediatrician

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Oct 2014
Childhood pneumonia

<table>
<thead>
<tr>
<th>Lung ultrasound Diagnosis</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>AUC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia Diagnosis versus Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest X Ray Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar/Lobar infiltrate</td>
<td>42.2 (0.38-0.47)</td>
<td>100 (0.99-100)</td>
<td>0.71 (0.68-0.74)</td>
</tr>
<tr>
<td>Lung ultrasound Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal findings II</td>
<td>79.5 (75.4-83.0)</td>
<td>95.2 (91.4-97.5)</td>
<td>0.87 (0.85-0.90)</td>
</tr>
<tr>
<td>Medium to large consolidation†</td>
<td>28.0 (24.0-32.5)</td>
<td>100 (98.0-100)</td>
<td>0.64 (0.60-0.68)</td>
</tr>
</tbody>
</table>

- 87% agreement between CXR and lung ultrasound

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Oct 2014
Asthma

353 children had asthma by pediatrician
– 206 (58%) had pneumonia diagnosis

<table>
<thead>
<tr>
<th>Lung ultrasound Diagnosis</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>AUC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia Diagnosis in Asthma Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest X Ray Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar/Lobar infiltrate</td>
<td>45.8</td>
<td>86.5</td>
<td>0.66</td>
</tr>
<tr>
<td>(0.40-0.53)</td>
<td>(0.79-0.92)</td>
<td></td>
<td>(0.61-0.71)</td>
</tr>
<tr>
<td>Lung ultrasound Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal findings II</td>
<td>83.7</td>
<td>50.4</td>
<td>0.67</td>
</tr>
<tr>
<td>(77.8-88.4)</td>
<td>(41.6-59.1)</td>
<td></td>
<td>(0.62-0.72)</td>
</tr>
<tr>
<td>Medium to large consolidation†</td>
<td>26.1</td>
<td>97.7</td>
<td>0.62</td>
</tr>
<tr>
<td>(20.3-32.8)</td>
<td>(93.0-99.4)</td>
<td></td>
<td>(0.56-0.67)</td>
</tr>
</tbody>
</table>

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Oct 2014
Bronchiolitis

140 children had bronchiolitis by pediatrician
– 29 (21%) had pneumonia diagnosis

<table>
<thead>
<tr>
<th>Lung ultrasound Diagnosis</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>AUC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar/Lobar infiltrate</td>
<td>40.7 (0.23-0.61)</td>
<td>91.3 (0.84-0.96)</td>
<td>0.66 (0.57-0.74)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chest X Ray Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar/Lobar infiltrate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lung ultrasound Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal findings ‡</td>
</tr>
<tr>
<td>Medium to large consolidation†</td>
</tr>
</tbody>
</table>

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Oct 2014
Case 1

CXR - Lung ultrasound -

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Sept 2014
Case 2

CXR +

Lung ultrasound+

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Sept 2014
Case 3

CXR -

Lung ultrasound +

Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Sept 2014
Inter-observer variability

<table>
<thead>
<tr>
<th>Diagnostic method</th>
<th>Kappa</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest Radiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Agreement</td>
<td>0.37</td>
<td>(0.34-0.40)</td>
</tr>
<tr>
<td>Normal</td>
<td>0.40</td>
<td>(0.37-0.42)</td>
</tr>
<tr>
<td>Interstitial Opacities</td>
<td>0.20</td>
<td>(0.16-0.23)</td>
</tr>
<tr>
<td>Alveolar/Lobar infiltrate</td>
<td>0.51</td>
<td>(0.48-0.58)</td>
</tr>
<tr>
<td>Lung ultrasound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Agreement</td>
<td>0.65</td>
<td>(0.61-0.66)</td>
</tr>
<tr>
<td>Abnormal findings II</td>
<td>0.73</td>
<td>(0.70-0.74)</td>
</tr>
<tr>
<td>All size consolidations</td>
<td>0.78</td>
<td>(0.77-0.83)</td>
</tr>
<tr>
<td>Interstitial Findings</td>
<td>0.38</td>
<td>(0.27-0.41)</td>
</tr>
</tbody>
</table>

*Ellington et al, BMJ Open, 2012
Ellington et al, preliminary data, Oct 2014*
Children with respiratory complaints

Lung ultrasound evaluation

Group 1
Normal lung ultrasound

1. Pneumonia suspicion: further test (i.e. CXR) or treat.
2. No pneumonia suspicion: lung ultrasound + clinical follow

Group 2
Abnormal lung ultrasound
(Interstitial infiltrate, small consolidation)

1. Pneumonia suspicion: CXR or treat.
2. No pneumonia suspicion: lung ultrasound + clinical follow

Group 3
Medium to large consolidation

1. Pneumonia confirmed: Treat
FUTURE STEPS
Specific aims

• Quantify the effect of lung ultrasound as a point-of-care diagnostic approach by trained personnel on:

(1) Reduction in antibiotic use
(2) Subsequent acute care needs
(3) Reduction of Chest X rays (CXR) use.
Study participants

Children < 5 years of age who meet the WHO initial criteria for ALRI (cough and/or difficulty breathing) in acute care centers in Puno, Peru.

Inclusion criteria:

• Child less than 5 years of age.
• Complaints of cough and/or difficulty breathing

Exclusion criteria:

• Self-reported history or signs of chronic lung or heart disease.
Study design

Eligible participants with ALRI

Randomization 1:1

Control Group
- Standard Clinical Evaluation
- Lung Ultrasound not available for decision-making
- Follow-up
 - 1. Antibiotic use
 - 2. Subsequent acute care need

Ultrasound group
- Standard Clinical Evaluation + Lung Ultrasound
- Follow-up
 - 1. Antibiotic use
 - 2. Subsequent acute care need
Future studies

- Lung ultrasound follow-up
- Lung ultrasound: bacterial versus viral
- Lung ultrasound + electronic ascultation
Conclusions

1. Ultrasound is a fast, portable, easy-to-use tool that requires minimal training and resources.

2. Data are promising:
 - Good Sensitivity, Great Specificity
 - High concordance with radiography
 - Good reliability

3. Proposed approach:
 WHO Clinical assessment + Lung ultrasound
Acknowledgement

• William Checkley MD PhD

• Robert Gilman MD DTMH
• “The use of ultrasound in respiratory diseases of the child needs to be encouraged not simply as a valid diagnostic alternative but as a necessary ethical choice.” Mathis G.