Lead exposure in indigenous children of the Peruvian Amazon

Cynthia Anticona Huaynate, Miguel San Sebastian, Ingvar Bergdahl
Department of Public Health and Clinical Medicine, Umeå University, Sweden
The Corrientes river basin

- Northeastern part of Peru
- Loreto Region
- Extension 425 km
- 36 villages (total population: 8000) Achuar, Quichua and Urarina
- oil installations
Oil industry in the Corrientes

Since 1970
- Environmental impacts
 • Discharging of produced waters into the rivers
 • disposal of sewage and industrial waste
 • frequent oil spills.
 • Documented:
 - 1987: high levels of Hg, Cr, TPH, in surface waters.
 - 1998-2007: oils, fats, TPH and heavy metals
 - 2006-2009: 158 oil spills, 10 damaged sites

(FECONACO, 2011).

- Health and social impacts

No comprehensive assessment yet. Continuous communities’ demands and protests.
THE CASE

Lead exposure in the Corrientes

2004 - 2005
Indigenous leaders and health officials (CENSOPAS) planned first assessment of health impacts

July 2005
Study: Blood lead and cadmium
74 children, 7 communities

Limitations to assess oil exposure’s indicators.
Selection of Pb and Cd
THE CASE

Lead exposure in the Corrientes

June 2006
Elevated blood Pb (66%)
Elevated blood Cd(99%)

Attributed to the Oil-related pollution
THE CASE

Lead exposure in the Corrientes

October 2006: DORISSA Agreement

Funding for an independent study to clarify the source of heavy metals exposure
THE STUDY

Participatory epidemiological study

January 2008: Collaboration agreement

July 2008: I joined the research team, PhD project
To understand the reasons for the elevated BLLs in order to suggest control and prevention strategies
Specific objectives

To determine:
- sources
- risk factors
- pathways
Specific objectives

To understand:
- lead exposure
- oil activity

Oil Activity → ? → BLLs
The participatory research process (2008-2011)

- **2008**: Establishing the collaborative partnership
- **2009**: Rethinking the sources
- **2009**: Communicating results
- **2010**: New study
Communities exposed to oil activity → Higher exposure to oil-related contamination → Higher lead exposure
2 villages exposed
1 village non exposed to oil activity
Participants

All residents aged 0-17 years, whose families had lived in the area for the last five years and whose parents authorized their participation.
STUDY I

PROCEDURES

1. **Lead population**: BLL in all children 0-17 years using the Leadcare

2. **Lead environment**: water and soil samples in villages and selected dwellings

3. **Risk factors**: Hb levels, anthropometrics questionnaire and risk map
RESULTS STUDY I

Table 4. Demographic characteristics of children in three communities, Corrientes river basin, Peruvian Amazon, 2009.

<table>
<thead>
<tr>
<th></th>
<th>San Cristobal</th>
<th>Peruanito</th>
<th>Sta. Isabel de Copal</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>13(5.8)</td>
<td>88(39.8)</td>
<td>120(54.3)</td>
<td>221(100.0)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td>9 (69.3)</td>
<td>47(53.4)</td>
<td>68(56.7)</td>
<td>124(56.1)</td>
</tr>
<tr>
<td>Boys</td>
<td>4(30.7)</td>
<td>41(46.6)</td>
<td>52(43.3)</td>
<td>97(43.9)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>6(46.2)</td>
<td>19(21.6)</td>
<td>33(27.5)</td>
<td>58(26.2)</td>
</tr>
<tr>
<td>4-6</td>
<td>3(23.1)</td>
<td>21(23.8)</td>
<td>26(21.7)</td>
<td>50(22.6)</td>
</tr>
<tr>
<td>7-17</td>
<td>4(30.7)</td>
<td>48(54.5)</td>
<td>61(50.8)</td>
<td>113(51.1)</td>
</tr>
</tbody>
</table>

RESULTS STUDY I

<table>
<thead>
<tr>
<th>n</th>
<th>GM BLL ug/dl</th>
<th>BLL > 10ug/dl</th>
<th>BLL > 5ug/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>8.7 ug/dL</td>
<td>27.4%</td>
<td>85%</td>
</tr>
</tbody>
</table>
RESULTS STUDY I

Regardless exposure to oil activity No ≠ in GM BLLs

Elevated BLLs

<table>
<thead>
<tr>
<th>Variable</th>
<th>No.</th>
<th>%</th>
<th>Geometric mean BLL, μg/dL</th>
<th>GSD, μg/dL</th>
<th>BLL ≥ 10 μg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With oil activity</td>
<td>88</td>
<td>42.3</td>
<td>9.08</td>
<td>3.9</td>
<td>26</td>
</tr>
<tr>
<td>Without oil activity</td>
<td>120</td>
<td>57.7</td>
<td>8.38</td>
<td>4.1</td>
<td>31</td>
</tr>
</tbody>
</table>

TABLE 1. Descriptive characteristics and blood lead levels in children from two study communities (n = 208) in Corrientes River basin, Peru, 2009
RESULTS STUDY I

Older age: group 7-17 years old has 3.7 times greater likelihood...than the group 0-3 years old.

Boys: 2.12 times more likely than girls of having BLLs ≥ 10ug/dL

Risk factors

Environmental assessment

Pb levels below reference values
Rethinking ...

RESEARCH VISIT TO PERUANITO

- Group discussions
- Interviews
- Households visits

- Metal lead for fishing sinkers
- Recycling high tension cables from the oil company waste’ deposits
- Car batteries, ammunition, vendors

Group discussions
- Interviews
- Households visits

- Metal lead for fishing sinkers
- Recycling high tension cables from the oil company waste’ deposits
- Car batteries, ammunition, vendors
STUDY II

- Practices involving contact with metal Pb
- Living near oil facilities (greater access to lead)
- Higher level of lead exposure
6 villages
≠ exposure to oil activity
6 communities

- Geographic location
- History of oil exposure
- Distance to nearest oil installation
- Number of oil spills (OS) from 2006

High exposure:
- JO: 2.5km; 5OS
- AN: 2.5km; 6OS

Medium exposure:
- PE: 5km; 0OS
- SC: 5km; 7OS
- PA: 4km; 7OS

No exposure:
- SI: 42 km
Participants

All children aged 0-17 years, whose families had lived in the area for the last five years and whose parents authorized their participation.
STUDY II

PROCEDURES (Similar to study I)

Environmental assessment
- sediments, fish, soil (communities)
- indoor dust, stove ash, foodstuff (dwellings)

Risk factors questionnaire
- activities/practices involving the contact with Pb
RESULTS STUDY II

<table>
<thead>
<tr>
<th>n</th>
<th>GM BLL ug/dl</th>
<th>BLL≥10ug/dl</th>
<th>BLL≥5ug/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>346</td>
<td>7.5 ug/dL</td>
<td>27%</td>
<td>78%</td>
</tr>
</tbody>
</table>

Table 3: Age group-specific multivariate logistic models of OR and 95% CI for BLLs ≥10 μg/dl in children from six indigenous communities of the Peruvian Amazon, 2010

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall n=346</th>
<th>0–6 years n=182</th>
<th>7–17 years n=153</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys*</td>
<td>3.7 (2.1–6.5)</td>
<td>1.5 (0.6–3.7)</td>
<td>1.2 (0.5–3.4)</td>
</tr>
<tr>
<td>Age group 4–6 years†</td>
<td>2.9 (1.1–7.5)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Age group 7–17 years†</td>
<td>6.9 (1.8–26.2)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Reside in a community with high exposure to oil activity‡</td>
<td>2.7 (1.2–6.3)</td>
<td>7.2 (2.5–20.2)</td>
<td>4.6 (1.2–16.8)</td>
</tr>
<tr>
<td>Play with pieces of lead</td>
<td>NA</td>
<td>7.2 (2.5–20.2)</td>
<td>NA</td>
</tr>
<tr>
<td>Fish ≥ three times/week§</td>
<td>NA</td>
<td>NA</td>
<td>7.8 (2.9–21.3)</td>
</tr>
<tr>
<td>Chew lead scraps</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Drive motorboat</td>
<td>NA</td>
<td>NA</td>
<td>3.4 (1.0–9.9)</td>
</tr>
</tbody>
</table>

Note: NA: not applicable.
*Compared to girls.
†Compared to age group 0–3 years.
‡Compared to reside in a community with no exposure to oil activity.
§Compared to not fishing.
RESULTS STUDY II

0-6 years
- Play with pieces of lead
 - Fish ≥3 times per week
 - Chew pieces of lead to make fishing sinkers

7-17 years

had an increased risk of having elevated BLLs
<table>
<thead>
<tr>
<th>Overall</th>
<th>Living in a community highly exposed to oil activity increased the risk for elevated BLLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to oil activity</td>
<td>proximity of communities to oil facilities and greater access to lead cables and other wastes</td>
</tr>
<tr>
<td>Environmental assessment</td>
<td>Pb levels below reference values</td>
</tr>
</tbody>
</table>
CONCLUSIONS
Chewing lead to make fishing sinkers

Playing with pieces of lead

Living in a community highly exposed to oil activity

Metal lead

BLLs 7-17 years

BLLs 0-6 years
Connection with oil activity

Proximity to oil battery facilities
Greater access to metal lead
Communities near oil facilities

- Greater access to industrial wastes from which to extract Pb.

- The majority of men work in the company.

- Families keep scraps of lead at home.
Recommendations

A community-based lead control and prevention plan

Introduce substitute non-harmful material(s) for fishing sinkers

Ensure secure containment of the oil company’s waste deposits
Thanks....
STUDY II Data collection

a) **assessment of BLL.** Leadcare system
b) assessment of Hb levels. HEMOCUE
c) **Risk factors questionnaire** to the heads of all families
d) **environmental sampling in communities:**
 - Sediments, soil, fish (EPA protocol)
e) **environmental sampling in selected dwellings:**
 - Indoor dust, foodstuff (EPA protocol)

Chemical analysis
- Total Pb in all samples by inductively coupled plasma- sector field mass spectrometer (ICPSFMS)
- Modified U.S. EPA method 200.8. Laboratory ALS Scandinavia

Data analysis
Descriptive statistics, bivariate analysis. Logistic regression with GEE